

CS1000ED Hall-effect Current Sensor Series

Open loop current sensor based on the principle of Hall-effect. It can be used for measuring AC,DC,pulsed and mixed current.

Electrical characteristics							
	Туре	CS200ED	CS400ED	CS600ED	CS800ED	CS1000ED	
I_{PN}	Primary nominal input current	200	400	600	800	1000	A
I _P	Measuring range of primary current	0~±400	0~±800	0~±1200	0~±1200	0~±1200	A
Vout	Nominal output voltage	4±1%					V
$\mathbf{V}_{\mathbf{C}}$	Supply voltage	±12~±15(±5%)					V
$I_{\rm C}$	Current consumption	V _C =±15V <25					mA
V _D	Insulation voltage	AC/50Hz/1min 2.5					kV
εL	Linearity	<1					%FS
Vo	Offset voltage	T _A =25℃ <±25					mV
Vom	Residual voltage	I _{PN} →0 <±25					mV
Vor	Thermal drift of V ₀	$I_P=0$ $T_A=-25\sim+85^{\circ}C$ <±1					mV/℃
T _R	Response time	≤7					μs
f	Frequency bandwidth(-3dB)	DC~20					kHz
TA	Ambient operating temperature	-25~+85					င
Ts	Ambient storage temperature	-40~+100					c
R _L	Load resistance	≥10					ΚΩ
	Standard	Q/320115QHKJ01-2010					

Dimensions of drawing (mm)

Elucidation: 1:+15V 2:-15V 3:V_{OUT} 4:0V(GND) OFS:Zero adjustment GIN:Gain adjustment

Remarks

- $\cdot \textbf{Incorrect connection may lead to the damage of the sensor.} \\$
- $\cdot V_{OUT}$ is positive when the I_P flows in the direction of the arrow.