


CSM1000SH Hall-effect Current Sensor Series

Closed loop current sensor based on the principle of Hall-effect. It can be used for measuring AC,DC,pulsed and mixed current.

Electrical characteristics			
	Туре	CSM1000SH	
I_{PN}	Primary nominal input current	1000	A
I_P	Measuring range of primary current	0~±2000	A
I_{SN}	Secondary nominal output current	200±0.5%	mA
$\mathbf{K}_{\mathbf{N}}$	Conversion ratio	1:5000	
$\mathbf{R}_{\mathbf{M}}$	Measuring resistance (V _C =±15V)	$I_{P}=\pm 1000$ 0~30	Ω
	$(V_C=\pm 15V)$	I _P =±1200 0~20	Ω
	$(V_C = \pm 24V)$	I _P =±1000 0~68	Ω
	$(V_C = \pm 24V)$	I _P =±2000 0~15	Ω
$\mathbf{V}_{\mathbf{C}}$	Supply voltage	±15~±24(±5%)	V
I_{C}	Current consumption	$V_C = \pm 24V$ 30+Is	mA
V_{D}	Insulation voltage	AC/50Hz/1min 6	kV
$\epsilon_{ m L}$	Linearity	<±0.1	%FS
X	Accuracy	T _A =25℃ <±0.7	%
I_0	Zero offset current	T _A =25℃ <±0.4	mA
I _{OT}	Thermal drift of \mathbf{I}_0	$I_P=0$ $T_A=-25\sim+85^{\circ}C$ <±0.5	mA
T_R	Response time	<1	μs
di/dt	di/dt accurately followed	>100	A/μs
f	Frequency bandwidth(-3dB)	DC~150	kHz
T_A	Ambient operating temperature	-25~+85	င
T_S	Ambient storage temperature	-40~+100	င
R_S	Secondary coil resistance(T _A =25°C)	42	Ω
	Standard	Q/320115QHKJ01-2010	

Dimensions of drawing (mm)

Remarks

Incorrect connection may lead to the damage of the sensor. I_{SN} is positive when the I_P flows in the direction of the arrow.

Dynamic performance (di/dt and response time) are best with a primary bar in the center of the through-hole.