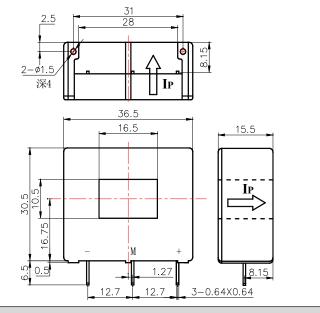
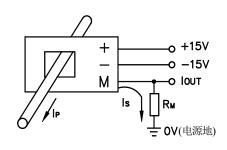


CSM200AP Hall-effect Current Sensor Series




Closed loop current sensor is based on the principle of Hall-effect. It can be used for measuring AC,DC,pulsed and mixed current.

Electrical characteristics			
	Туре	CSM200AP	
I_{PN}	Primary nominal input current	200	A
I_P	Measuring range of primary current	0~±300	A
I_{SN}	Secondary nominal output current	100±0.5%	mA
\mathbf{K}_{N}	Conversion ratio	1:2000	
R_{M}	Measuring resistance	$V_{C}=\pm 12V/I_{PN}$ 0-57	Ω
		$V_{C}=\pm 12V/I_{P} \qquad \qquad 0-22$	Ω
		$V_{C}=\pm 15V/I_{PN}$ 0-87	Ω
		$V_C = \pm 15 V/I_P$ 0-42	Ω
$\mathbf{V}_{\mathbf{C}}$	Supply voltage	±12~±15(±5%)	V
I_{C}	Current consumption	$V_C = \pm 15V$ 10+Is	mA
V_{D}	Insulation voltage	AC/50Hz/1min 3	kV
E L	Linearity	<0.1	%FS
X	Accuracy	T _A =25℃ <±0.7	%
I_0	Zero offset current	$T_A=25$ °C <±0.2	mA
Іом	Residual current	I _P →0 <±0.15	mA
I_{OT}	Thermal drift of I ₀	$I_{P}=0$ $T_{A}=-25\sim+85^{\circ}$ $\leq \pm 0.005$	mA/℃
T_{R}	Response time	<1	μs
f	Frequency bandwidth(-3dB)	DC~200	kHz
T_A	Ambient operating temperature	-25~+85	ဗ
Ts	Ambient storage temperature	-40~+100	ဗ
$\mathbf{R}_{\mathbf{S}}$	Secondary coil resistance(T _A =25°C)	48	Ω
m	Mass	17	g
	Standard	Q/3201CHGL02-2016	

Dimensions of drawing (mm)

Connection

Remarks

- ·Incorrect connection may lead to the damage of the sensor. Is n is positive when the Ip flows in the direction of the arrow.
- ·Dynamic performance (di/dt and response time) are best with a primary bar in the center of the through-hole.