

## CS2000EK2T Hall-effect Current Sensor Series



Open loop current sensor based on the principle of Hall-effect. It can be used for measuring AC, DC, pulsed and mixed current.

| Electrical characteristics |                                    |                                          |           |            |            |            |      |
|----------------------------|------------------------------------|------------------------------------------|-----------|------------|------------|------------|------|
|                            | Туре                               | CS300EK2T                                | CS500EK2T | CS1000EK2T | CS1500EK2T | CS2000EK2T |      |
| $I_{PN}$                   | Primary nominal input current      | 300                                      | 500       | 1000       | 1500       | 2000       | A    |
| $I_P$                      | Measuring range of primary current | 0~600                                    | 0~1000    | 0~2000     | 0~2250     | 0~2500     | A    |
| I <sub>OUT</sub>           | Secondary nominal output current   | <b>20</b> (± <b>1</b> %)                 |           |            |            |            | mA   |
| $R_{M}$                    | Measuring resistance               | 80~450                                   |           |            |            |            | Ω    |
| V <sub>C</sub>             | Supply voltage                     | +24(±5%)                                 |           |            |            |            | V    |
| $I_{\rm C}$                | Current consumption                | $25+I_{ m OUT}$                          |           |            |            |            | mA   |
| $V_{D}$                    | Insulation voltage                 | AC/50Hz/1min 5                           |           |            |            |            | kV   |
| $\epsilon_{ m L}$          | Linearity                          | <1                                       |           |            |            |            | %FS  |
| Io                         | Zero offset current                | T <sub>A</sub> =25°C 4±0.1               |           |            |            |            | mA   |
| I <sub>OT</sub>            | Thermal drift of $I_{\rm O}$       | $I_P=0$ $T_A=-25\sim+85^{\circ}C$ <0.005 |           |            |            |            | mA/℃ |
| $T_R$                      | Response time                      | ≤7                                       |           |            |            |            | μs   |
| f                          | Frequency bandwidth(-3dB)          | DC~10                                    |           |            |            |            | kHz  |
| T <sub>A</sub>             | Ambient operating temperature      | -25~+85                                  |           |            |            |            | C    |
| $T_S$                      | Ambient storage temperature        | -40~+100                                 |           |            |            |            | C    |
| m                          | Mass                               | 300                                      |           |            |            |            | g    |
|                            | Standard                           | Q/320115QHKJ01-2010                      |           |            |            |            |      |

## Dimensions of drawing (mm)



Note: 1:+24V 2:0V(GND) 3:  $I_{OUT}$  OFS:Zero adjustment GIN:Gain adjustment

## Remarks

Incorrect connection may lead to the damage of the sensor.

 $I_{\text{OUT}}$  is positive when the  $I_{\text{P}}$  flows in the direction of the arrow.