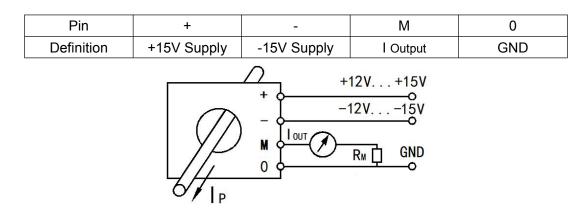

DCSM300LDGH High-Precision Current Transducer

DCSM300LDGH Current Transducer using the principle of flux gate .It can measure DC, AC, pulse, and various irregular wave form current under electrical isolation conditions.It has ultra-high accuracy and linearity features.



Electrical characteristics			
	Туре	DCSM300LDGH	
I _{PN}	Primary nominal input current	±300	A(DC)
I _{PNAC}	Primary nominal RMS current	212	A(AC)
Ι _P	Measuring range of primary current	0~±440(±15V, 10Ω)	А
Іоит	Secondary nominal output current	±150	mA
K_N	Conversion ratio	1:2000	
R_{M}	Measuring resistance	with±12V @±300Amax 0(min) 21(max)	Ω
		with±15V @±300Amax 0(min) 40(max)	Ω
Vc	Supply voltage	±12~±15(±5%)	V
Ic	Current consumption	20+I _P /K _N	mA
V_{D}	Insulation voltage	AC/50Hz/1min 5	kV
٤L	Linearity	@I _P =0-±I _{PN} ±0.02	%FS
Х	Accuracy	@T _A =25℃ <0.05	%
Ιο	Zero offset current	@T _A =25℃ <±10	uA
I _{OT}	Thermal drift of I _O	@I _{PN} =0 T _A =-40~+85°C <±10	uA
I _{OUTT}	Thermal drift of I _{OUT}	@T _A =-40~+85℃ <10	ppm
T_R	Response time	@100A/μS, 10%-90% ≤1	μs
f	Frequency bandwidth	@-3dB DC~100	kHz
di/dt	di/dt accurately followed	>100	A/µs
T _A	Ambient operating temperature	-40~+85	$^{\circ}$ C
Ts	Ambient storage temperature	-40~+125	$^{\circ}$
Rs	Secondary coil resistance	@T _A =25℃ 48	Ω
m	Mass	110	g
	Standard	Q/320115QHKJ01-2016	

Dimensions of drawing (mm)

Connection

Remarks

- Incorrect connection may lead to the damage of the transducer.
- I_{OUT} is positive when the I_P flows in the direction of the arrow.
- Operating Status Instructions
- 1, Normal Status: The green indicator is "on" under the normal working conditions.
- 2, Fault Status: The green light is "off" that indicates the transducer is in fault mode.

Trouble-shooting:

- a)When the green light is off, the power supply should be checked as the first step;
- b) If the power supply is normal, then the primary current is over the specified measurement range and the transducers will be in overload mode. In this mode, the transducers will be working in non-zero flux status, the secondary and primary currents are not in proportional. Once the primary current return to the specified measurement range, the transducers will be running normally.
- The temperature of the original measuring cable or busbars should not exceed 100 ℃.